
Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Part V
Session Management Security

1

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Why Session Management Security?

• HTTP protocol doesn‘t offer session management

• web applications rely however on browsersessions,
users and their data

• therefore they must implement their own
session management

• PHP offers ext/session which is the basis of a session
management that can be used by PHP applications

• securing it is the job of the application

2

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session ID

The session ID is a string that identifies a user session an
the data contained in it

3

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Secure Session ID Generation

• not suited as session id are

• current timestamp (in seconds)

• the user‘s IP address

• sequential numbers

• simple combinations/hashes of these values

• suited are combinations of

• microseconds

• random numbers

• process IDs

4

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session ID Generation in PHP

• PHP generates a new session id from

• the current timestamp in microseconds

• the process ID, the IP address of the user

• a random number from the LCG

• combination gets hashed

• MD5 / SHA1 / ext/hash

• alphanumerical encoding (4-6 bit)

➡ PHP generated session id is considered safe

5

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session ID Transport

• PHP supports differen session id transports

• in cookie

• in query string

• in form field

• preferred is transport by cookie

• session id in query string or form field is more
complicated to handle

• session id in query string leaks through referrer

6

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session ID Transport - Cookie Security

• session name

• to stop applications to influence each other

- session_name(‘myApplicationX‘);

• httpOnly cookies

• to stop JavaScript from accessing the cookie

- ini_set(‘session.cookie_httponly‘, true);

• secure Flag important for SSL sites

• to stop cookie from leaking on port 80

- ini_set(‘session.cookie_secure‘, true);

7

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Lifetime

• users want to stay logged in forever

• from a security point of view sessions should be
deactivated after some inactive idle time

- ini_set(“session.gc_maxlifetime“, 60*15); // 15 minutes

• by changing the cookie parameters the maximum
session lifetime can be controlled

- ini_set(“session.cookie_lifetime“, 60*15); // 15 minutes

- ini_set(“session.cookie_lifetime“, 0); // until browser is closed

8

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Permissive vs. strict Session-Systems

• Permissive session-systems

• accept arbitrary session ids

• only refuses session ids containing illegal characters

• creates a new session, if none exists with the choosen id

• strict session-systems

• accept only session id created by themself

• will refuse a session id if it does not belong to a started session

➡ PHP session management is permissive

9

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Strict Session System in PHP

session_start();

// Accept only sessions with strict flag
if (!isset($_SESSION[‘strict‘])) {

 // Generate new session id
 session_regenerate_id();

 // set strict flag
 $_SESSION = array(‘strict‘ => true);
}

10

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage

• PHP saves sessions serialized

• PHP supports differen session storage modules

• session.save_handler - storage-module: files, mm, user, sqlite

• session.save_path - configuration of storage-module

• Default-configuration

• session.save_handler - files

• session.save_path - /tmp

11

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Data Mixup (I)

• Default /tmp often not changed

• all applications share session data

• very bad in shared hosting situations

• can lead to inter-application-exploits

12

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Data Mixup (II)

• Example 1 - Setup

• Customer runs two applications on own server

• both applications consist of multi-step forms

• both application store previous steps in the session

• application 1 copies all user input in the session - validation/
filtering occurs after the last step

• application 2 copies only validated and filtered data into a session

13

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Data Mixup (III)

• Example 1 - Exploit

• Attacker enters malicious data into application 1

• Attacker copies session id from cookie of application 1 into the
cookie of application 2

• Attacker uses application 2 that trusts blindly the unfiltered data
that was stored by application 1 in the session

➡ unfiltered malicious data from application 1 results in a security
problem in application 2

14

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Data Mixup (IV)

• Example 2 - Setup

• Customer runs two applications on his own server

• both applications are for separate user groups

• both applications are developed by the same developers

• both applications share parts of their implementation

15

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Data Mixup (V)

• Example 2 - Exploit

• Attacker is a user of application 1
(maybe even a moderator / admin)

• Attacker logs into application 1

• Attacker copies session if from the cookie of application 1 into the
cookie of application 2

• because both applications share the implementation of the user
object, application 2 finds a compatible, valid and logged in user
object in the session

• Attacker is logged into application 2

16

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Data Mixup Prevention

• store session data always in separate places

• ini_set(‘session.save_path‘, ‘/tmp/application_1‘);

• userspace session storage module

• add application marker to session

• encrypt session data

17

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Applicationmarker

session_start();

if (!isset($_SESSION[‘application‘])
 || ((string)$_SESSION[‘application‘] !== ‘application_1‘)) {

 session_regenerate_id();
 $_SESSION = array(‘application‘ => ‘application_1‘);

}

18

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Userspace Session Storage

• PHP supports userspace session storage

- set_session_save_handler(“o“,“r“,“w“,“c“,“d“,“g“);

• six functions must be implemented

• open - storage module init

• read - loading session data

• write - storing session data

• close - storage module shutdown

• destroy - delete a session

• gc - garbage collector

19

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Insecure Transactions (I)

• usual implementation

• open - gets ignored

• read - SELECT * FROM tb_sess WHERE sid=?

• write - INSERT/UPDATE tb_sess SET data=? WHERE sid=?

• close - gets ignored

• destroy - gets ignored

• gc - gets ignored

20

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Storage - Insecure Transactions (II)

• common implementations ignore that reading,
modifying and writing back the session data is a
transaction

• most userspace session storage handlers are vulnerable
to race conditions

21

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Hijacking

• Attacker retrieved the session id of a user and takes over
the session

• possible take over paths

• sniffing HTTP connections

• leak of session id in query string through referer

• XSS

22

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Hijacking - Countermeasures

• do not transport session id in query string

• mark session id cookie as httpOnly

• use SSL and mark session cookies as secure

• add additional safeguards: one time URL tokens

23

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Hijacking - One Time URL Tokens

• all links must include the one time URL token

• current valid URL tokens must be stored in session

• used one time URL tokens are deleted from session

• requests without valid one time tokens are ignored

• session hijacking becomes more work because one time
URL tokens must be retrieved, too

24

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Fixation

• Attacker forces the victim to surf with a session id
chosen by the attacker

• possible attack vectors

• session id in query string

• cookie infection

• because session id is known there is no need to
guess or steal it

25

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Fixation - Invalid Countermeasures

• bind session to content of HTTP headers

➡ session fixation becomes only minimally harder

➡ browser compatibility problem

• bind session to user‘s IP address

➡ leads to problems with big ISPs with changing IP addresses

➡ doesn‘t protect against attacks from the LAN / same route

➡ but works against attacks from the outside

26

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Session Fixation - Working Countermeasures

• Changing the session id after each change in status

➡ session_regenerate_id() + session_destroy()

➡ stops abuse of fixated sessions

• Re-authentication before sensitive actions

➡ requesting the password

➡ stops fixation because valid requests require user‘s password

27

Stefan Esser • PHP Security Crash Course at Dutch PHP Conference 2009 • June 2009 •

Questions ?

28

